АНИОНИТ ТОКЕМ-801

ТУ 2227-025-72285630-2011

Высокоемкий сильноосновный анионит гелевой структуры с улучшенным гранулометрическим составом и осмотической стабильностью.

Хорошо удаляет из воды кремниевую кислоту и анионы кислот. Оптимально подобранная сшивка полимерной матрицы обеспечивает хорошую кинетику обмена, эффективную и экономичную регенерацию анионита.

ОБЩЕЕ ОПИСАНИЕ	
Матрица	стирол-дивинилбензольная
Функциональная группа	четвертичные аммониевые группы основного характера (тип 1)
Структура	гелевая
Ионная форма	СГ-хлоридная ОН⁻-гидроксильная

Область применения:

Анионит может быть использован во всех традиционных ионообменных процессах, в том числе:

- обессоливание воды на тепловых электростанциях, котельных;
- очистка технологических растворов и сточных вод;
- разделение и выделение цветных металлов.

Физико-химические характеристики:

НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ	HOPMA
Внешний вид	Сферические зерна от белого до коричневого цвета
Размер зерен, мм	0,40-1,25
Объемная доля рабочей фракции, %, не менее	96
Эффективный размер зерен, мм, не более	0,6
Коэффициент однородности, не более	1,6
Массовая доля влаги в CI ⁻ -форме, %	46-52
Осмотическая стабильность, %, не менее	95
Окисляемость фильтрата в пересчете на кислород, мг/л, не более	0,55
Полная статическая обменная емкость в ОН ⁻ -форме, ммоль/см ³ (мг-экв, не менее	/см³), 1,0
Процент целых гранул в товарном продукте, %, не менее	95

продолжение таблицы (физико-химические характеристики)

Насыпная масса в Cl ⁻ -форме, г/см ³	0,66-0,73
Истинная плотность в CI ⁻ -форме, г/см ³	1,03-1,09

Технологические характеристики:

РЕКОМЕНДАЦИИ ПО ПРОВЕДЕНИЮ ТЕХНОЛОГИЧЕСКИХ ОПЕРАЦИЙ И РЕЖИМАМ ЭКСПЛУАТАЦИИ:	
Минимальная высота слоя, мм	800
Коэффициент гидравлического сопротивления, кПа·ч/м²	1,35
Максимальная температура, °C Cl⁻-форма OH⁻-форма	80 60
Диапазон рН	0-14
Дыхание при переходе из Cl ⁻ - в ОН ⁻ -форму, %	30
Регенерирующий раствор, %	(3-4) NaOH
Расход воды на отмывку, об./об.	2-5
Расширение слоя ионита при взрыхлении, %	80-100

